Contenido principal del artículo

Jorge Antonio Vaca Jaramillo
Stéfano Alexander Durán Solórzano

Con el objetivo de analizar la evidencia científica sobre tecnologías digitales e inteligencia artificial en prevención del suicidio mediante revisión sistemática. Se aplicó la metodología PRISMA consultando cinco bases de datos académicas (Web of Science, Scopus, PubMed, Science Direct, EBSCO) con operadores booleanos específicos. De 600 registros iniciales, se seleccionaron 40 estudios (2020-2025) tras aplicar criterios de inclusión/exclusión. Los resultados señalan que las tecnologías identificadas incluyen chatbots terapéuticos, modelos de lenguaje grandes, algoritmos de aprendizaje automático y análisis de redes sociales. Mostraron efectividad en detección temprana, intervención psicoeducativa y apoyo emocional en poblaciones diversas (adolescentes, adultos, veteranos). Conclusiones establecen que las tecnologías digitales e IA presentan potencial significativo para prevención del suicidio, requiriendo validaciones clínicas rigurosas y marcos éticos para implementación segura.

With the aim of analyzing the scientific evidence on digital technologies and artificial intelligence in suicide prevention through a systematic review, the PRISMA methodology was applied by consulting five academic databases (Web of Science, Scopus, PubMed, Science Direct, EBSCO) using specific Boolean operators. Out of 600 initial records, 40 studies (2020-2025) were selected after applying inclusion/exclusion criteria. The results indicate that the identified technologies include therapeutic chatbots, large language models, machine learning algorithms, and social media analysis. They showed effectiveness in early detection, psychoeducational intervention, and emotional support in diverse populations (adolescents, adults, veterans). Conclusions establish that digital technologies and AI present significant potential for suicide prevention, requiring rigorous clinical validations and ethical frameworks for safe implementation.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Vaca Jaramillo, J. A. ., & Durán Solórzano, S. A. . (2025). Prevención del suicidio en contextos digitales. Revista Ecuatoriana De Psicología, 8(22), 111–117. https://doi.org/10.33996/repsi.v8i22.183
Sección
INVESTIGACIONES
Bookmark and Share
Referencias

Alghazzawi, D., Ullah, H., y Tabassum, N. (2025). Explainable AI-based suicidal and non-suicidal ideations detection from social media text with enhanced ensemble technique. Scientific Reports, 15, 1111. https://doi.org/10.1038/s41598-024-84275-6

Arowosegbe, A., y Oyelade, T. (2023). Application of natural language processing (NLP) in detecting and preventing suicide ideation: A systematic review. International Journal of Environmental Research and Public Health, 20(2), 1514. https://doi.org/10.3390/ijerph20021514

Ball?, M., Dogan, A., y Senol, S. (2025). Machine learning based identification of suicidal ideation using non-suicidal predictors in a university mental health clinic. Scientific Reports, 15, 97387. https://doi.org/10.1038/s41598-025-97387-4

Bernert, R., Hilberg, A., Melia, R., Kim, J., Shah, N., y Abnousi, F. (2020). Artificial intelligence and suicide prevention: A systematic review of machine learning investigations. International Journal of Environmental Research and Public Health, 17(16), 5929. https://doi.org/10.3390/ijerph17165929

Brown, A., Kumar, A., Melamed, O., Ahmed, I., Wang, Y., Deza, A., y Rose, J. (2023). A motivational interviewing chatbot with generative reflections for increasing readiness to quit smoking: Iterative development study. JMIR Mental Health, 10, e49132. https://doi.org/10.2196/49132

Caetano, A., Freitas, R., y Soares, A. (2024). Comparative analysis of BERT-based and generative large language models for detecting suicidal ideation: A performance evaluation study. Cadernos de Saúde Pública, 40(10), e00028824. https://doi.org/10.1590/0102-311xen028824

Chan, W., Fitzsimmons-Craft, E., Smith, A., Firebaugh, M., Fowle, L., DePietro, B., Topooco, N., Wilfley, D., Taylor, C., y Jacobson, N. (2022). The challenges in designing a prevention chatbot for eating disorders: Observational study. JMIR Formative Research, 6(1), e28003. https://doi.org/10.2196/28003

Edwards, E., Geraci, J., Gildea, S., Houtsma, C., Holdcraft, J., Kennedy, C., King, A., Luedtke, A., Marx, B., Naifeh, J. A., Sampson, N., Stein, M., Ursano, R., y Kessler, R. (2025). Improving explainability of post-separation suicide attempt prediction models for transitioning service members. Translational Psychiatry, 15(1), 37. https://doi.org/10.1038/s41398-025-03248-z

Goyal, S., Dutta, R., Dev, S., Kola, N., y Wasim, M. (2025). MindLift: AI-powered mental health assessment for students. Neuroscience Informatics, 5(2), 100208. https://doi.org/10.1016/j.neuri.2025.100208

Guo, Z., Lai, A., Thygesen, J., Farrington, J., Keen, T., y Li, K. (2024). Large language models for mental health applications: Systematic review. JMIR Mental Health, 11, e57400. https://doi.org/10.2196/57400

Instituto Nacional de Estadística y Censos. (2024). Estadísticas vitales registro estadístico de defunciones generales de 2023. https://www.ecuadorencifras.gob.ec/documentos/web-inec/Poblacion_y_Demografia/Defunciones_Generales/2023/Principales_resultados_EDG_2023.pdf

Karkosz, S., Szyma?ski, R., Sanna, K., y Micha?owski, J. (2024). Effectiveness of a web-based and mobile therapy chatbot on anxiety and depressive symptoms in subclinical young adults: Randomized controlled trial. JMIR Formative Research, 8, e47960. https://doi.org/10.2196/47960

Liu, J., Shi, M., y Jiang, H. (2022). Detecting suicidal ideation in social media: An ensemble method based on feature fusion. International Journal of Environmental Research and Public Health, 19(13), 8197. https://doi.org/10.3390/ijerph19138197

Moylan, K., y Doherty, K. (2025). Expert and interdisciplinary analysis of AI-driven chatbots for mental health support: Mixed methods study. Journal of Medical Internet Research, 27, e67114. https://doi.org/10.2196/67114

Organización Mundial de la Salud. (2025, marzo 25). Suicidio. https://www.who.int/es/news-room/fact-sheets/detail/suicide

Parks, A., Travers, E., Perera-Delcourt, R., Major, M., Economides, M., y Mullan, P. (2025). Is this chatbot safe and evidence-based? A call for the critical evaluation of generative AI mental health chatbots. Journal of Participatory Medicine, 17, e69534. https://doi.org/10.2196/69534

Scholich, T., Barr, M., y Wiltsey Stirman, S. (2025). A comparison of responses from human therapists and large language model–based chatbots to assess therapeutic communication: Mixed methods study. JMIR Mental Health, 12, e69709. https://doi.org/10.2196/69709

Sherekar, P., y Mehta, M. (2025). Harnessing technology for hope: A systematic review of digital suicide prevention tools. Discover Mental Health, 5(1), 101. https://doi.org/10.1007/s44192-025-00245-y

Suharwardy, S., Ramachandran, M., Leonard, S., Gunaseelan, A., Lyell, D., Darcy, A., Robinson, A., y Judy, A. (2023). Feasibility and impact of a mental health chatbot on postpartum mental health: A randomized controlled trial. AJOG Global Reports, 3(3), 100165. https://doi.org/10.1016/j.xagr.2023.100165

Van der Schyff, E. L., Ridout, B., Amon, K. L., Forsyth, R., y Campbell, A. J. (2023). Providing self-led mental health support through an artificial intelligence–powered chat bot (Leora) to meet the demand of mental health care. Journal of Medical Internet Research, 25, e46448. https://doi.org/10.2196/46448

Varghese, N., Mittal, A., Bhatt, A., Patel, R., y Sharma, M. (2024). Public perception on artificial intelligence-driven mental health interventions: Survey research. Digital Health, 10, 20552076241232567. https://doi.org/10.1177/20552076241232567

Yeskuatov, E., Ling, S., y Kien, L. (2022). Leveraging Reddit for suicidal ideation detection: A review of machine learning and natural language processing techniques. International Journal of Environmental Research and Public Health, 19(16), 10347. https://doi.org/10.3390/ijerph191610347